
Package index
-
MVgen()
- Amputation of a dataset
-
check.conditions()
- Check if the design is valid
-
check.design()
- Check if the design is valid
-
datasim
- A single simulated dataset
-
eBayes.mod()
- MI-aware Modifed eBayes Function
-
formatLimmaResult()
- Format a Result from Limma
-
hid.ebayes()
- MI-aware Modifed eBayes Function
-
limmaCompleteTest.mod()
- Computes a hierarchical differential analysis
-
make.contrast()
- Builds the contrast matrix
-
make.design.1()
- Builds the design matrix for designs of level 1
-
make.design.2()
- Builds the design matrix for designs of level 2
-
make.design.3()
- Builds the design matrix for designs of level 3
-
make.design()
- Builds the design matrix
-
meanImp_emmeans()
- Multiple Imputation Estimate
-
mi4limma()
- Differential analysis after multiple imputation
-
mm_peptides
- mm_peptides - peptide-level intensities for mouse
-
multi.impute()
- Multiple imputation of quantitative proteomics datasets
-
norm.200.m100.sd1.vs.m200.sd1.list
- A list of simulated datasets.
-
proj_matrix()
- Variance-Covariance Matrix Projection
-
protdatasim()
- Data simulation function
-
qData
- Extract of the abundances of Exp1_R25_pept dataset
-
rubin1.all()
- First Rubin rule (all peptides)
-
rubin1.one()
- First Rubin rule (a given peptide)
-
rubin2.all()
- Computes the 2nd Rubin's rule (all peptides)
-
rubin2bt.all()
- 2nd Rubin's rule Between-Imputation component (all peptides)
-
rubin2bt.one()
- 2nd Rubin's rule Between-Imputation Component (a given peptide)
-
rubin2wt.all()
- 2nd Rubin's rule Within-Variance Component (all peptides)
-
rubin2wt.one()
- 2nd Rubin's rule Within-Variance Component (a given peptide)
-
sTab
- Experimental design for the Exp1_R25_pept dataset
-
test.design()
- Check if xxxxxx
-
within_variance_comp_emmeans()
- Multiple Imputation Within Variance Component