Computes the first Rubin's rule for all the peptides.

rubin1.all(
  data,
  metacond,
  funcmean = meanImp_emmeans,
  is.parallel = FALSE,
  verbose = FALSE
)

Arguments

data

dataset

metacond

a factor to specify the groups

funcmean

function that should be used to compute the mean

is.parallel

Logical, whether or not use parallel computing (with foreach).

verbose

Logical, should messages be displayed?

Value

A vector of estimated parameters.

References

M. Chion, Ch. Carapito and F. Bertrand (2021). Accounting for multiple imputation-induced variability for differential analysis in mass spectrometry-based label-free quantitative proteomics. doi:10.1371/journal.pcbi.1010420 .

Author

Frédéric Bertrand

Examples

library(mi4p)
data(datasim)
datasim_imp <- multi.impute(data = datasim[,-1], conditions = 
attr(datasim,"metadata")$Condition, method = "MLE")
rubin1.all(datasim_imp[1:5,,],funcmean = meanImp_emmeans,
attr(datasim,"metadata")$Condition)
#>           [,1]     [,2]
#> [1,]  99.02599 200.2387
#> [2,] 100.18124 199.4532
#> [3,]  99.62693 200.1038
#> [4,] 100.09296 200.1658
#> [5,] 100.56314 199.6811