Function to simulate benchmark datasets.
Usage
protdatasim(
iii = 1,
nobs = 200,
nobs1 = 10,
ng1 = 5,
ng2 = 5,
mg1 = 100,
mg2 = 200,
dispg1 = 1,
dispg2 = 1
)
Arguments
- iii
A parameter useful to loop over for simulated lists of datasets. It has no effect.
- nobs
Number of peptides
- nobs1
Number of peptides with differential expressions between the two conditions
- ng1
Number of biological replicates in condition A
- ng2
Number of biological replicates in condition B
- mg1
Mean in condition A
- mg2
Mean in condition B
- dispg1
Dispersion in condition A
- dispg2
Dispersion in condition B
References
M. Chion, Ch. Carapito and F. Bertrand (2021). Accounting for multiple imputation-induced variability for differential analysis in mass spectrometry-based label-free quantitative proteomics. doi:10.1371/journal.pcbi.1010420 .
Examples
data_sim <- protdatasim()
attr(data_sim,"metadata")
#> Sample.name Condition Bio.Rep
#> 1 X1 A 1
#> 2 X2 A 2
#> 3 X3 A 3
#> 4 X4 A 4
#> 5 X5 A 5
#> 6 X6 B 6
#> 7 X7 B 7
#> 8 X8 B 8
#> 9 X9 B 9
#> 10 X10 B 10
norm.200.m100.sd1.vs.m200.sd1_list <- lapply(1:100, protdatasim)
attr(norm.200.m100.sd1.vs.m200.sd1_list[[1]],"metadata")
#> Sample.name Condition Bio.Rep
#> 1 X1 A 1
#> 2 X2 A 2
#> 3 X3 A 3
#> 4 X4 A 4
#> 5 X5 A 5
#> 6 X6 B 6
#> 7 X7 B 7
#> 8 X8 B 8
#> 9 X9 B 9
#> 10 X10 B 10