Computes the first Rubin's rule for a given peptide.

rubin1.one(peptide, data, funcmean = meanImp_emmeans, metacond)

Arguments

peptide

peptide for which the variance-covariance matrix should be derived.

data

dataset

funcmean

function that should be used to compute the mean

metacond

a factor to specify the groups

Value

A vector of estimated parameters.

References

M. Chion, Ch. Carapito and F. Bertrand (2021). Accounting for multiple imputation-induced variability for differential analysis in mass spectrometry-based label-free quantitative proteomics. arxiv:2108.07086. https://arxiv.org/abs/2108.07086.

Author

Frédéric Bertrand

Examples

library(mi4p) data(datasim) datasim_imp <- multi.impute(data = datasim[,-1], conditions = attr(datasim,"metadata")$Condition, method = "MLE") rubin1.one(1,datasim_imp,funcmean = meanImp_emmeans, attr(datasim,"metadata")$Condition)
#> [1] 99.02599 200.23868