Computes the within-variance component in the 2nd Rubin's rule for all peptides.
rubin2wt.all(
data,
funcvar = mi4p::within_variance_comp_emmeans,
metacond,
is.parallel = FALSE,
verbose = TRUE
)
List of variance-covariance matrices.
M. Chion, Ch. Carapito and F. Bertrand (2021). Accounting for multiple imputation-induced variability for differential analysis in mass spectrometry-based label-free quantitative proteomics. doi:10.1371/journal.pcbi.1010420 .
library(mi4p)
data(datasim)
datasim_imp <- multi.impute(data = datasim[,-1],
conditions = attr(datasim,"metadata")$Condition, method = "MLE")
rubin2wt.all(datasim_imp[1:5,,],funcvar = within_variance_comp_emmeans,
attr(datasim,"metadata")$Condition)
#> [[1]]
#> A B
#> A 0.1911347 0.0000000
#> B 0.0000000 0.1911347
#>
#> [[2]]
#> A B
#> A 0.1265196 0.0000000
#> B 0.0000000 0.1265196
#>
#> [[3]]
#> A B
#> A 0.2441502 0.0000000
#> B 0.0000000 0.2441502
#>
#> [[4]]
#> A B
#> A 0.1465614 0.0000000
#> B 0.0000000 0.1465614
#>
#> [[5]]
#> A B
#> A 0.1341801 0.0000000
#> B 0.0000000 0.1341801
#>